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ABSTRACT: The cohesive energy of an infinite two-dimensional lattice such as graphite is governed by the
connectivity (number of bonds per atom) of the graph and by the cyclic effects. We propose to define the aromatic
contribution to the cohesive energy of a specific lattice as the difference between the exact cohesive energy and that of
an ideal dendrimer of the same connectivity. Direct evaluation of the cyclic contributions are possible starting from
fully localized zeroth-order wavefunctions and using an order-by-order perturbative expansion or a recently proposed
coupled-cluster formalism, which allow one to identify clearly the energetic role of the ring currents. Copyright #
2005 John Wiley & Sons, Ltd.
Supplementary electronic material for this paper is available in Wiley Interscience at http://www.interscience.
wiley.com/jpages/0894-3230/suppmat/
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INTRODUCTION

The concepts of aromaticity and antiaromaticity play an
important role in chemistry. Several criteria, including
bond length equalization, chemical reactivity and physi-
cal properties (e.g. stabilization energy), have been in-
troduced to rationalize these definitions. Based on
Hückel’s milestone papers,1 specific stabilities have
been attributed to the presence of six- (or ten-) mem-
bered rings with six (or ten) electrons. Conversely, the
lack of stability has been sought in four- (or eight-)
membered rings occupied by four (or eight) electrons.
An important, although not systematic, connection was
established between these energetics features and the
existence of cyclic circulations of electrons along the
ring, i.e. the so-called ring currents, as they manifest
themselves in other observables, in particular in NMR
spectroscopy. It is commonly accepted that aromatic
molecules (4nþ 2 �-electrons) are characterized by uni-
fom geometries (i.e. identical C—C distances), whereas
antiaro-matic species (4n �-electrons) exhibit alternating
bond lengths and rather localized electronic structures.
However, some antiaromatic species (e.g. the polymethi-
nium cation C5H9Nþ

2 ) may exhibit nearly equal C—C
bond lengths. Even more surprinsingly, the highly aro-
matic compound tetracene exhibits bond length varia-
tions of the order of 0.1 Å. Hence, the characterization of

aromaticity using these criteria may be ambiguous. Con-
sidering these limitations, it was therefore suggested that
coumpounds which exhibit significantly exalted diamag-
netic susceptibility are aromatic.2 Such a definition was
supported by a detailed analysis of experimental and ab
initio data.

In fact, the magnetic properties of aromatic and anti-
aromatic compounds families differ significantly. In the
former, a prefered flow orientation in the presence of a
magnetic field generates a magnetic field in the opposite
direction, resulting in an enhancement of the diamagnetic
contributions. Conversely, the paramagnetic contribu-
tions arising from the mixing of the excited states with
the ground state may be dominant, resulting in a net
positive magnetic susceptibility.

Recently, the important factors controlling the aro-
matic and antiaromatic patterns have been analyzed.3

On the basis of a valence-bond approach, the authors
concluded that a fundamental difference lies in the
symmetry-controlled mixing of ionic stuctures into the
covalent states. In particular, the absence in the ground
state of the so-called diagonal ionic structures where
charges are located on opposite sites is clear evidence
of the vanishing circulation of �-electrons in antiaromatic
species such as cyclobutadiene. In molecules such as
benzene, it has been shown that such mixing accounts for
the electronic flow around the ring perimeter. On the basis
of a topological analysis using the electron localization
function (ELF), the separation into the � and � contribu-
tions has been evoked to build up an aromaticity scale.4

From the experimental point of view, much effort has
been devoted to the synthesis of conjugated molecules.
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Among the most challenging issues are the design of
molecular wires using conjugated oligomers such as
polypyrrole or polythiophene and the control of the linear
(and non-linear) optical response trends.5 The synthesis of
ladder-conjugated systems was first considered as a pos-
sible strategy to avoid the Peierls instability and simulta-
neously reach and control low bandgaps. Following this
trend, dendrimeric structures (Fig. 1) consisting of in-
creasing branches of definite length and chemical consti-
tution have been prepared in the last decade.6 Clearly, the
electronic and photonic applications which have been
anticipated in these conjugated materials has opened up
a wide perspective for theoretical investigations.

The aim of this study was to look into the importance
of aromatic contributions in periodic systems. We shall
concentrate mainly on the cohesive energy and leave the
evaluation of other properties such as the bandgap energy
for the future. Although mostly used for molecules, and
particularly for conjugated hydrocarbons, the concept of
aromaticity may also be applied to periodic lattices such
as graphite. However, the criteria used to distinguish
aromatic from antiaromatic species are controversial, as
mentioned before for molecular systems. Therefore, one
has first to define a reference system on which the
delocalization contributions can be evaluated.

The equivalence of all atoms in such a lattice greatly
simplifies the issue of the definition of a non-aromatic
reference from which the strictly aromatic contributions
should be defined. It will be shown from a simple
derivation that the first crucial characteristic of a lattice
regarding its cohesive energy is the connectivity of the
graph, i.e. the number of bonds in which each atom is
involved. We will then concentrate on a relevant ring-free
lattices, the dendrimers of the same connectivity, to
evaluate the aromatic or antiaro-matic contributions to
the total energy. An analytical approach is derived in
order to identify directly the energetic role of the cyclic
electronic circulation around the rings which appears
directly as differences to the energy contributions of the
ideal dendrimeric reference. The influence of closed
paths (i.e. rings) in infinite systems has already been
reported using the moment method.7

We shall follow a constructive approach for both the
periodic system and the reference dendrimer to identify
the differenciated contributions and grasp their physical
content in the light of the cyclic circulation. The method
starts from strongly localized zeroth-order pictures and
relies on a Rayleigh–Schrodinger (RS) expansion or a

coupled-cluster (CC) treatment.8 It will become apparent
that the localized character of the reference function is
crucial in order to obtain analytical expressions and to
stress the respective role of the connectivity of the graph
and the cyclic circulations of the electrons in a variety of
graphs of connectivity 3 combining squares, hexagons
and octagons. Emphasis will be placed on the RS expan-
sion since the energy is built as a rational sum of order-
by-order corrections. The CC evaluations based on the
recently reported self-consistent perturbative equations
(SCPEs)9 will be used for control.

METHODOLOGICAL DETAILS

Step-by-step perturbative energy evaluation

Our analysis will be limited to periodic lattices where all
sites are equivalent and bring one electron per site (half-
filled bands). The familiar �-systems of conjugated
hydrocarbons obviously fall into this class of compounds.
In order to illustrate the role of the connectivity (defined
as the number of nearest-neighbor atoms) in the cohesive
energy, we shall consider a dendrimer of connectivity nc.
Such systems are under intense experimental investiga-
tion at present since important properties such as non-
linear optics are anticipated. Dendrimers with connectiv-
ities 2 and 3 (the so-called ‘3-tree’) are shown in Fig. 1.
For nc¼ 2, the dendrimer is a linear chain. Obviously,
steric hindrance prevents the existence of such dendri-
meric conjugated hydrocarbons. However, their treatment
through simplified Hamiltonians such as Hubbard or
Hückel is perfectly possible. In the Hückel limit, the �
spin electrons move independently from the � spin
electrons. Hence one can concentrate on the � part of
the wavefunction which will give half of the cohesive
energy. Details of the step-by-step energy corrections
using the RS perturbation theory are given in the Sup-
porting Information, available in Wiley Interscience.

Each atom is involved in a single bonding orbital i of
energy t built on two atomic orbitals (AOs), whereas the
corresponding antibonding MO i� energy is �t. The
zeroth-order determinant �0 is the product of the doubly
occupied bonding MOs. Hence the zeroth-order energy
per bond (i.e. the zeroth-order cohesive energy) is the
same for all lattices, Ecoh¼ t.

One must then introduce the delocalization between
bonds which proceeds through the excitations from a
bonding MO i to the nearest-neighbor (NN) antibonding
MOs j� (see Fig. 2). The resulting charge-transfer

Figure 1. Schematic representation of dendrimers

Figure 2. Schematic view of the reference function �0 and
the NNCT determinant �ij�
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determinant (NNCT) �ij� lies �2t higher in energy than
�O. One can easily calculate the coupling between �0

and �ij� , Hij� ¼ h�0jHj�ij� i ¼ hijhjj�i ¼ t=2. From first-
order perturbation theory, the coefficient of the charge
transfer determinant �ij� in the ground-state wavefunc-
tion �0 ¼ �0 þ

P
cij��ij� þ � � � is given by

cij� ¼ h�ij� jHj�0i=2t ¼ t=2=2t ¼ 1=4

whatever the connectivity of NN bonds i and j. In the
following, we shall consider systems with a single type of
NNCT, that is, cij� ¼ c. However, the second-order en-
ergy correction introduces the connectivity since
2ðnc � 1Þ charge transfers between NN bonds are possi-
ble from a given i. Each charge transfer brings an energy
lowering which is equal to jHij� j2=2t ¼ cij� t=2 ¼ t=8.
Therefore, the second-order corrected energy is

Eð2Þ ¼ t þ 2ðnc � 1Þt=8 ¼ tð1 þ ðnc � 1Þ=4Þ

An improved evaluation takes into account the so-
called EPV (exclusion principle violating10) correc-
tions.11 These corrections reflect the fact that acting on
a given charge transfer determinant �ij� some similar
charge transfers cannot be generated as a result of the
Pauli principle. One may show that an infinite summation
of the higher order corrections result in a simple energy
shift of the denominators. If one calls EPVð�KÞ the sum
of the second-order corrections brought by all the excita-
tions which are possible on �0 and impossible on �K , the
energy denominators should be shifted according to
�0K ¼ h�0jHj�0i � h�K jHj�Ki ! �0

0K ¼ h�0jHj�0i�
h�K jHj�Ki � EPVð�KÞ. The number of NN bonds con-
nected to a given bond i is 2ðnc � 1Þ. Since both i and j
are involved and i ! j� cannot be repeated, the number of
forbidden charge transfers on �ij� is 4nc � 5, while the
EPV correction is ð4nc � 5Þct=2 (see Fig. 3). The EPV-
corrected first-order coefficient therefore become con-
nectivity dependent:

c ¼ t=2

2t þ ð4nc � 5Þct=2
ð1Þ

The numerical values for nc¼ 2, 3 and 4 are given in
Table 1. This leads to a second-order equation fixing
an improved value as compared with 1/4 of the
NNCT coefficient c and the second-order energy
correction is

Eð2Þ ¼
X
ij�

ch�ij� jHj�0i

Owing to the monoelectronic nature of the Hamiltonian
H, the third-order energy correction rises from the coupling
between NNCT �ij� and �kl� with i¼ k or j� ¼ l�. To be
non-zero, this correction requires an actual interaction
between the NNCT �ij� and �kl� As will be shown later,
this correction is crucial as soon as six-membered rings
are present. Therefore, its contribution is strictly zero in
dendrimers.

Finally, the fourth-order energy correction implies
back-and-forth displacements of the electrons through
charge transfer between next-nearest-neighbor (NNN)
bonds. It should be noted (see the Supporting Informa-
tion) that if the propagation goes through a ‘branched’
pattern (see Fig. 4), the contribution vanishes. The non-
zero NNNCT coefficients c

ð2Þ
ik� concern the ‘linear’ pat-

terns (see Fig. 4). Since hj�jHjk�i ¼ �t=2 and
hijHjki ¼ t=2, one obtains c

ð2Þ
ik� ¼ 2cð�t=2Þ=2t ¼ �c=2.

If one introduces the EPV relative to �ik� , a refined
evaluation of c

ð2Þ
ik� can be derived (see Supporting

Information) and the fourth-order energy correction
results:

Eð4Þ ¼
X
ij�

X
kl�

ch�ij� jHj�kl� ic

A self-consistent pertubative approach
to the cohesive energy

A second strategy to evaluate the cohesive energy of a
periodic lattice relies on a recently proposed self-consis-
tent perturbation method9 that we shall briefly recall here.

Table 1. Cohesive energies of dendrimers with connectivity
nc in the unit of t

nc

2 3 4

MO-based NNCT amplitudea 0.215 0.188 0.170
perturbation

2nd order 1.250 1.500 1.750
2nd orderþEPV 1.215 1.376 1.511
4th orderþEPV 1.253 1.478 1.683

AO SCPE CTb 1.224 1.480 1.688
CT/double CTc 1.265 1.500 1.701

a See Eqn (1).
b Self-consistent determination of the CT between adjacent atoms.
c Self-consistent determination of the CT and double CT between adjacent
atoms.

Figure 3. EPV processes in the nc ¼ 3 dendrimer. Dotted
lines indicate the antibonding bond MOs i� and j�

Figure 4. ‘Branched’ (a) and ‘linear’ (b) patterns of electron
propagation. The signs indicate the phases on the antibond-
ing MOs i�, j� and k�
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Let us start with the mostly localized picture which is
based on AOs. It can be demonstrated that the valence
bond determinant of largest weight in the exact wave-
function is a Néel determinant exhibiting spin alternation
on all bonds. Thus, each �-electron is surrounded by �-
electrons. The prevalence of this function reflects (i) the
preference for neutral valence bond distribution and (ii)
the impact of the Fermi hole which is due to the
antisymetry of the wavefunction. If the one-site energy
is arbitrarily taken as zero, the energy of �0, h�0jHj�0i,
is also zero. Starting from �0, the hopping of a given
electron from one site to an adjacent site gives rise to an a
NNCT determinant �i with positive and negative charges
on the pair of atoms. For the Hückel Hamiltonian, all the
valence bond distributions have the same energy, that is,
zero. The exact wavefunction can be expanded in terms
of the different determinants as

� ¼ �0 þ
X
k 6¼0

ck�k þ
X
�6¼0

c���

where the fckg and fc�g coefficients stand for the NNCT
and beyond-NNCT amplitudes, respectively. The eigen-
equation problem H� ¼ E� can be specified by simply
projecting on to �0. The knowledge of the NNCT
amplitudes fckg is sufficient to determine the energy
precisely:

E ¼
X
k

ckt

For equal bond lengths, the unique charge-transfer
amplitude fully determines the cohesive energy ncct.
The evaluation of c goes through the projection of the
eigenequation problem on to the NNCT �i along the i
bond. The resulting equation is

ðHii � EÞci � Hi0 þ
X
�

Hi�c� ¼ 0 ð2Þ

where Hij ¼ h�ijHj�ji. Note that for a Hückel Hamilto-
nian the excitation energies Hii � H00 are zero, and
therefore Hii � E ¼

P
k ckt. The only determinants ��

interacting with �i are obtained by a second charge
transfer along another bond k. Provided that the reference
bond i and k are sufficiently far apart, the amplitude of the
�� determinant can be approximated as c� ¼ ckci ¼ c2.
This equation reflects the independence of the two NNCT
involved in the generation of the ��. For such processes,
a cancellation occurs between the quantity ð�cktÞci and
the quantity tckci in the first and third terms of Eqn (2).
However, this particular simplification does not hold for
(i) the NNCT determinants �k which are not possible on
�i and (ii) the NNCT which generate double charge-
transfer �� states corresponding to non-additive excita-
tion energies, i.e. H�� � H00 6¼ Hii � H00 þ Hkk � H00.

The former have been mentionned previously and give
rise to the EPV corrections,10 shifting the excitation
energies as �0

ii ¼ Hii � H00 � EPVðiÞ.11 The amplitude
c� of the non-additive charge transfer �� can be eval-
uated by means of first-order perturbation theory:

c� ¼ cick
�0

ii þ�0
kk

�0
��

� �

The difference Hi�c� � ðcktkÞci in Eqn (2) vanishes as
soon as �0

ii þ�0
ii ¼ �0

��. Inspection of the charge trans-
fers along the NNN bonds of bond i displays non-additive
excitation energies, �0

�� ¼ �ð4nc � 3Þct 6¼ �0
ii þ�0

kk ¼
�2ð2nc � 1Þct. Since the number of NNN bonds is
2ðnc � 1Þ2

, the equation which determines the unique
NNCT amplitude c is

½�ð2nc � 1Þct�cþ t þ 2ðnc � 1Þ2
tc2

ð4nc � 3Þct ¼ 0 ð3Þ

The analytical resolution of this equation is obviously
straightforward. More accurate evaluations can be ob-
tained when one evaluates the coefficient d of the double-
adjacent charge transfer on NNN bonds in a self-consis-
tent manner. This strategy leads to a set of coupled
equations (see Supporting Information). Interestingly,
this particular treatment allows one to account for the
third-order contributions which might be crucial in the
characterization of cyclic effects.

A different strategy starts with bond MOs. The zeroth-
order determinant �0 is the product of the doubly
occupied bonding MOs as in the previous perturbative
approach. The charge-transfer determinants correspond
to excitations i ! j� between NNN bonds. Whereas the
determination of the coefficient c goes through the same
logics, the cohesive energy is t þ 2ðnc � 1Þct=2 ¼
ð1 þ ðnc � 1ÞcÞt. Since there are 2ðnc � 1Þ NNN bonds
for a given one, the EPV correction to the excitation
energy �2t is ½4ðnc � 1Þ � 1�ct=2. Using this bond MO
approach, the equation defining c is

½�2t � ð4nc � 5Þct=2�cþ t=2

þ ðnc � 1Þ ct

2½1 þ ðnc � 1Þc� ¼ 0
ð4Þ

where the first term represents the quantity ½Hii � E
�EPVðiÞ�c, the second is the coupling H0i and the third
represents the propagation effects (see Fig. 5) creating
charge transfers between NNN bonds.

Figure 5. Schematic view of the NNN bond charge transfers
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RESULTS AND DISCUSSION

Our goal was to identify the aromatic and antiaromatic
contributions to the total energy of a given two-dimen-
sional periodic systems. Considering a lattice of a given
connectivity including rings, we used the same logics as
before to (i) establish its cohesive energy and (ii) identify
the contributions of the cyclic effects.

Evaluation of dendrimer energies

As mentioned earlier, the dendrimer energies will be used
as references to identify, by contrast, the cyclic contribu-
tions of two-dimensional periodic systems which are
absent in the hypothetic parent dendrimers. Both strate-
gies based either on a step-by-step perturbative evalua-
tion of the cohesive energy or on the so-called SCPE
strategy reported previously9 were used. As seen in
Table 1, the cohesive energy increases fairly rapidly
with the connectivity nc. Therefore, in the partitioning
of the energy, the connectivity has to be explicitly taken
into account. Since for nc¼ 2 the exact energy is
4=� � 1:273, our energy calculation based on a self-
consistent evaluation of both the NN and NNN charge
transfer amplitudes c and d deviates by only 0.8%.

The exact energies of the 2D square lattice [(4/
�)2t¼ 1.621t] and of the honeycomb lattice (1.572t) are
known. Therefore, one may immediately estimate the
cyclic corrections to be (i) stabilizing 1.57t –
1.48t¼ 0.09t, �6% of the cohesive energy of the latter
or (ii) destabilizing 1.62t – 1.69t¼�0.07t, �4% of the
cohesive energy of the former. However, an enlightening
approach consists in a direct fourth-order evaluation of
the cohesive energies of these lattices, following the same
expansion as those derived in the previous section. Con-
sidering a lattice of a given connectivity including rings,
we used the same logics as before based on a local
evaluation to establish its cohesive energy. Hence any
change with respect to the corresponding dendrimer (that
is, of same connectivity) can be attributed to the cyclic
circulation of electrons around the ring perimeters.

In the following, special attention will be dedicated to
lattices of connectivity 3 and 4. As seen in Table 1, the
dispersions in the parent dendrimer energies are relatively
small. Therefore, we fixed these values as references to
1.480t and 1.690t, respectively.

Evaluation of honeycomb lattice energies

This strategy allows one to compare order-by-order the
contributions to the energy in the graphite with respect to
those in the reference 3-tree dendrimer. However, �0 can
be either defined from a quinonic distribution of the
double bonds (i.e. all double bonds being parallel) or
from a Kékulé-type distribution. For the latter, one ring

over three does not hold any double bond (see Fig. 6). The
zeroth- and second-order corrections are the same as for
the nc¼ 3 dendrimer. Changes appear at third-order,
corrections which are absent in the dendrimer. They
correspond to the processes �0 ! �ij� ! �ik� ! �0

and �0 ! �ij� ! �kj� ! �0, i.e. to a cyclic circulation
of the electrons in a hexagon. The resulting third-order
energy contribution is c2t. It corresponds to an anti-
clockwise electronic circulation. A clockwise circulation
is also possible in the same hexagon and, since i belongs
to two hegaxons, the third-order correction is Eð3Þ ¼ 4c2t.
The CT between NNN bonds appeared as fourth-order
processes in the parent dendrimer. Consequently, there
are only four remaining linear propagation to NNN bonds
out of the eight in the dendrimer. The back-and-forth
propagations are reduced by a factor of two. Finally, the
energy change starting from the dendrimer is

� ¼ Egraphite � Enc¼3 ¼ 4c2t
1 þ 4c

2 þ 4c

� �
¼ 0:094t

The cohesive energy of the graphite can be expressed as
Egraphite¼ (1.480þ 0.094)t¼ 1.574t, which is in excel-
lent agreement with the exact value. Therefore, the
identification of the cyclic circulation of the electrons
around the rings as responsible for the aromaticity of
graphite is correct. They account for 6% of the cohesive
energy.

An alternative approach would define either a Kékulé
(see Fig. 6) or a quinonic (see Fig. 7) distribution of the
double bonds (i.e. all double bonds being parallel) as a
zeroth-order wavefunction to derive the SCPE. The latter
strategy has been reported previously.9 A similar identi-
fication of the circulation effects was interpreted as the
enhancement of the fourth-order corrections. Indeed, the
coefficient of the colinear NNNCT determinants �ik� is
multiplied by a factor of two since it may be reached
through j or j0 (see Fig. 7). The processes such as
i ! j� ! k� ! j0� ! i which do not exist in the dendri-
mer introduce the cyclic circulation of the electrons
around the rings. Starting from the Kékulé D3h symmetry

Figure 6. D3h distribution of bond MOs on graphite

Figure 7. Quinonic distribution of the double bonds on
graphite
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wavefunction, the derivation of the unique SCPE is
straightforward and an accurate evaluation of the
NNCT amplitude which fully determines the cohesive
energy can be performed. The calculated energy (1.580t)
is again in excellent agreement with the exact value. The
clockwise NNCT �ik� can be generated from (i) �ij� by
propagating the electron from j� to k� and (ii) �jk� by
propagating the electron from i to j (hole propagation),
that is, two anti-clockwise NNCT. The resulting inter-
ference is clearly stabilizing by comparison with the
nc¼ 3 dendrimer. Hence the electronic circulation around
the six-membered ring is indeed energetically favorable.

At this point, the question of the cyclic effects exten-
sion should be raised. One way to look into this important
issue is to derive the SCPEs using an AO-based picture.
The equation defining the unique NNCT amplitude is
very similar to that given in the Supporting Information
for the dendrimer. The major difference lies in the
determination of the double adjacent charge-transfer
amplitude when the electron jumps occur within a given
six-membered ring. As pictured in Fig. 8, the electron
jump on a third bond of the same ring gives rise to a third-
order determinant which can actually be generated
through three series of clockwise and three series of
anti-clockwise jumps. The positive interference of these
two series of processes introduces a cyclic circulation of
the electrons that is obviously absent in the dendrimer.
These processes are responsible for the energy change
from the 3-tree dendrimer to the honeycomb lattice.
Applying rigorously the same self-consistent method to
this lattice, one has to distinguish the coefficient of the
double-adjacent charge-transfer configuration in which
both NNCT occur within the same ring (cis-movement)
and the one associated with electron jumps in two
different rings (trans-movement). The energy is calcu-
lated without any computational cost and leads to 1.574t.
Agreement with the exact value is excellent since our
evaluation exhibits a negligible deviation (<0.01%).
Hence the aromaticity appears again as a local phenom-
enon induced by the cyclic circulation of the electrons
around the ring perimeter.

Evaluation of 2D square lattice energy

Whether the antiaromatic effects appear as a restriction of
the delocalization processes with respect to those occur-
ing in the parent dendrimer is a relevant issue which
we now intend to clarify. The reduction of the electron
flow can be traced within the two so far used strategies.
An appropriate zeroth-order wavefunction is pictured
in Fig. 9(a). In effect, the ‘columnar’ wavefunction
[Fig. 9(b)] does not allow any delocalization between
one-dimensional horizontal chains. The electrons are
constrained to move within a given horizontal line. The
charge transfer i ! i0� is forbidden for symmetry reason
whereas the processes (i ! j�) (j� ! j0�) and (i0 ! j0�)
(i ! i0) cancel each other. Actually the solution con-
verges to a solution which is merely the product of
solutions on independent lines. Conversely, starting
from the ‘shifted’ function a third-order destabilizing
contribution around the square such as the clockwise
circulations (i ! j�) (j� ! k�) (k� ! i) or (i ! j�)
(k ! i) (j� ! k). Each of these clockwise contributions
is �c2t=2. By taking into account (i) the anti-clockwise
contributions and (ii) the participation of i in four
different rings, the total contribution is �8c2t. However,
the processes such as i ! j� ! h� ! i contribute with an
opposite sign, thus leading to a third-order energy-correc-
tion Eð3Þ ¼ �4c2t ¼ �0:11t. This positive third-order
effect is partly balanced by additional fourth-order cor-
rections. For instance, the NNNCT i ! l� can be reached
from i ! j� and i ! l�. Moreover, one must take into
account the double NNCT such as (i ! j�) (k ! l�) or
such as (i ! j0�) (i0 ! k0�). All these additional correc-
tions reflect the cyclic circulations along the rectangles
composed of two adjacent squares. They partly compen-
sate the destabilizing third-order effects. The antiaro-
matic contributions have also been investigated by
means of the SCP approach. Starting from AOs, one
can easily show that a pair of clockwise (or anti-clock-
wise) electron jumps is prohibited within the same ring.
The nullity of the corresponding double charge-transfer
amplitude �i0j0 is a consequence of the destructive inter-
ference between the two processes (i ! i0) (j0 ! j) and
(i ! j) (j0 ! i0) (see Fig. 10). Hence the equation defin-
ing the NNCT amplitude c (�7c2 þ 1 þ 14=13c2 ¼ 0)
hardly differs from that derived previously for the 4-tree
(�7c2 þ 1 þ 18=13c2 ¼ 0). The cohesive energies of the
2-D square lattice and the parent dendrimer are 1.640t

Figure 8. Clockwise processes leading to electronic
circulation

Figure 9. Bond MOs distributions on a 2D square lattice: (a)
‘shifted’ and (b) ‘columnar’
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and 1.690t, respectively. Note that the exact value is (4/
�)2t � 1.621t. Hence our evaluation is (i) in good
agreement with the exact value, and (ii) reflects the
destabilizing contribution [(1.64–1.69) t¼�0.05t] aris-
ing from the antiaromatic character of the 2-D square
lattice.

Even though the featuring physical effects have been
identified, we turned to the now usual second strategy
starting from the shifted bond MOs distribution. Two
types of charge transfer are to be considered, within a line
(i ! j) and between adjacent lines (i ! j0). The SCPEs
are easily derived. The cohesive energy of the 2D square
lattice was estimated as 1.640t, in agreement with all our
results.

Aromaticity versus anti-aromaticity: 2D
square and hexagon containing lattices

Owing their unusual electronic and mechanical proper-
ties, hydrocarbon systems such as carbon nanotubes have
attracted a great deal of interest.12 In particular, symme-
try-breaking distortions have been considered for nano-
tubes and also for higher dimensional compounds such as
fullerenes.13 In order to evaluate the importance of cyclic
circulations, we looked into the cohesive energies of two
featuring 2D squares and hexagons containing lattices,
consisting of squares, hexagons and octagons. In effect,
the honeycomb lattice is not the unique periodic lattice of
connectivity 3.

The first periodic array we were interested is a typical
structure that is encountered in zeolites such as the
AlPO—514 (see Fig. 11). If one starts from the hexagon
supported distribution of bonds, the second-order energy
correction is the same as for the dendrimer since the two
types of charge transfer (intra- and inter-hexagon) have
the same energy and same EPV corrections. The differ-
ence appears since two out of the eight NNNCT con-

tributions are now third-order corrections corresponding
to the cyclic circulations in the hegaxon. Therefore, the
comparison with the dendrimer exhibits an energy gain at
third order (2c2t ¼ 0:071t) and an energy loss at fourth
order [six NNNCT instead of eight, (2c2=ð2 þ 4cÞt ¼
0:026t]. Finally, the overall cyclic effects are 0.045t and
account for 3% of the predicted cohesive energy, which is
much less than in the graphite network (6%).

The second system is the so-called 1/5-depleted repre-
sented in Fig. 12. Such an array is well-known in
theoretical solid-state physics since a magnetic lattice
has been (at least for a while) schematized according to
Fig. 12 in reference to the spin-gapped compound
CaV4O9.15 The real material is highly correlated (i.e.
the bi-electronic repulsion greatly overrides the hopping
integral). This particular net is also found in the non-
metal part of the CaB2C2 system. For our purpose, one
may conceive of a conjugated hydrocarbon and estimate
its cohesive energy in the Hückel limit. Again, the
second-order energy correction is the same as for
the dendrimer. Since there is no third-order correction,
the changes rise from fourth-order correction. They
concern the cyclic circulation along the octagons. First,
the coefficient of the NNNCT �ik� (see Fig. 12) is zero
since �0 is symmetric whereas �ik� is antisymmetric.
This cancellation suppresses half of the fourth-order
NNNCT corrections of the nc¼ 3 dendrimer, i.e. reduces
the energy by 0.051t. Then, this cancellation is partly
balanced by the presence of double NNNCT such as
(i ! j�) (k ! l�) exhibiting a charge alternation along
the octagon. This state can be also reached from (i ! j�),
(k ! l�), (i ! l�) or (k ! j�). Hence its coefficient (con-
sidering the exciting energy 4t and the twelve EPV) is
cNNN ¼ 4ct=2=ð4t þ 12ct=2Þ ¼ c=ð2 þ 3cÞ. This inter-
ference effect brings a stabilizing contribution of
0.014t. The overall cyclic effects are antiaromatic,
�0.051tþ 0.014t¼�0.037t. However, this antiaromatic
contribution is smaller than the antiaromatic contribution
in the 2D square lattice.

CONCLUSION

This paper has shown, through a direct evaluation of the
cohesive energy of a lattice, the fundamental roles of
the connectivity and the circulation of the electrons

Figure 10. Destructive intereference between the up/down
and right/left arrows jumps

Figure 11. Schematic representation of the pseudo-zeolite
array

Figure 12. Schematic representation of the 1/5-depleted
array
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around the rings perimeters. The direct evaluations of
the cohesive energy from localized pictures performed
either from AOs or bond MOs (i.e. Kékulé determi-
nants) are in very good agreement with exact values. By
calculating the possibly EPV-corrected NNCT ampli-
tude, we first clarified the importance of connectivity by
considering dendrimeric architectures where cyclic
circulations are absent. The main concept which has
been conveyed is that a direct evaluation of the cyclic
contributions is accessible through the cohesive energy
comparison between a periodic lattice with and its
parent dendrimer. The perturbative evaluation of the
energy confirmed that electronic circulations are re-
sponsible for this energy difference. The energy per-
turbative expansion of notorious two-dimensional
lattices has shed light on the relative importance of
aromatic and antiaromatic contributions. Our apprach is
straightforward when all the atoms in the graph have the
same connectivity, but it can be generalized to any kind
of lattices. Our results would be even further improved
if the electron–electron repulsion which tends to loca-
lize the electrons were explicitely included. Finally, our
approach might well be applied to research into cyclic
effects in the � frame. Actually, cyclic third-order
effects take place in this system, in perfect isomorphism
with what occurs in the � system. Such mechanisms
involve, for instance, the interaction between the NNCT
from the �-bonding MO �1�2 to the antibonding MO
��3�4 and the NNCT from the same bonding MO to the
antibonding MO ��

5�6. Future works will extend the

present analysis to more realistic treatments, and estab-
lish the connection between the energetic cyclic correc-
tions and the magnetic properties.
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